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Crossed rolls at onset of convection in a rigid box 
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Department of Physics, West Virginia University, Morgantown, WV 26506, USA 

(Received 4 October 1985 and in revised form 4 September 1987) 

Critical Rayleigh numbers, roll configurations, and growth-rate derivatives are 
calculated at  onset of convection for a rigid box with conducting upper and lower 
plates and insulating sidewalls. When the sidewalls form a square or a near square, 
the linearized Oberbeck-Boussinesq equations favour crossed rolls, a superposition 
of three-dimensional rolls in the x- and y-directions, over unidirectional rolls. These 
crossed rolls preserve the four-fold rotation symmetry about the vertical axis of a 
square box only when the aspect ratio (ratio of width to depth of the box) demands an 
even number of rolls in each direction. The analysis explains patterns observed by 
Stork & Muller. 

1. Introduction 
At a critical temperature gradient, a static fluid layer that is heated from below 

undergoes a transition to steady convection. In  a fluid layer of depth d bounded by 
rigid horizontal conducting planes, equations linear in the convective amplitude 
cannot select the physical convective pattern from an infinite number of possibilities, 
including parallel rolls with axes in any horizontal direction, hexagons, and crossed 
rolls (Chandrasekhar 1961, chap. 11). For this laterally unbounded slab, nonlinear 
effects must be incorporated in order to identify parallel rolls as the physical 
convective pattern (Schluter, Lortz & Busse 1965). 

A small aspect ratio box with a rectangular horizontal cross-section restricts the 
roll axes to two possible horizontal directions prescribed by the sidewalls. For a box 
with rigid conducting sidewalls, a linear analysis by Davis (1967) showed that ' finite ' 
rolls with two non-zero components of velocity dependent on three spatial 
coordinates have axes along the short sidewall. Catton (19724 confirmed this result 
for finite rolls with rigid insulating sidewalls. 

In their experiments, Stork & Muller (1972) observed roll axes along the short 
sidewall when the difference in sidewall lengths was significant. For equal or near- 
equal sidewall lengths, however, they ascribed their symmetrical convection patterns 
to combinations of rolls with axes in both horizontal directions. Taking the x- and 
y-axes normal to the sidewalls and through the centre of the box, rolls with axes 
perpendicular to the x (y)-axis were termed x-rolls (y-rolls). A single toroidal roll 
observed for a (horizontally) square box of width 2d was viewed as a combination of 
two x-rolls and two y-rolls. Wider square boxes chose more complicated patterns 
with less obvious connections to crossed rolls. The calculations by Davis and Catton 
assuming rolls in only one direction cannot account for these patterns. 

Our linear calculations for onset of convection for a rigid box with insulating 
sidewalls allow combinations of rolls in both horizontal directions. We find that 
sidewalls require crossed rolls rather than rolls in only one direction and thereby fully 
remove the degeneracy of the laterally unbounded slab. We emphasize that the 
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absence of degeneracy at onset of convection for a box allows the physical convective 
pattern to be chosen by linear theory alone, in contrast to the laterally unbounded 
slab. Our analysis predicts Stork & Miiller's toroidal roll and explains other observed 
patterns as combinations of perpendicular rolls. When the geometry requires an even 
number of rolls in each horizontal direction, our crossed rolls resemble the ' cross-roll ' 
instability for a laterally unbounded slab (Clever & Busse 1974). We find, however, 
that the number of rolls in each direction cannot be determined independently; a 
square box sometimes requires an odd number of x-rolls and an even number of y- 
rolls. When the difference in sidewall lengths is large, rolls along the shorter sidewall 
dominate, consistent with Davis and Catton. Our box widths range between d and 
12d. 

Davies- Jones (1970) proved analytically that rigid sidewalls perpendicular to roll 
spines require three non-zero velocity components. In  addition, he calculated the 
critical Rayleigh number for onset of convection 9, and the critical wavelength qc of 
rolls perpendicular to the sidewalls of a 'channel', a box with one infinite horizontal 
dimension. Three-dimensional rolls yielded lower A?, and qc than finite rolls for free 
upper and lower plates and rigid sidewalls. Luijkx & Platten (1981) reached the same 
conclusions for a channel with all-rigid boundary conditions. Accordingly, we find 
that three-dimensional rolls in a box yield lower W, than previous two-dimensional 
descriptions. Crossed three-dimensional rolls further lower W, and often yield fewer 
rolls (lower (I,) than Davis. Catton's A?, exceeds our A?, for crossed rolls by as much 
as 8% for a square box of width 2d. 

We also calculate the growth-rate derivative u' at onset of convection for all 
Prandtl numbers 9(9 = V / K ,  the ratio of kinematic viscosity to thermal diffusivity). 
In linear Rayleigh-Be'nard theory, an infinitesimal-amplitude disturbance about the 
static state grows (or decays) with time as cut. Near W,, the growth rate behaves as 
u = u'c, where E = A?/W,- 1 and u' > 0. The growth-rate derivative u' = (dcr/de),,, 
characterizes the divergence of the timescale u-l at convective onset relevant to 
' critical slowing down ' (Behringer & Ahlers 1977). Shaumeyer, Behringer & Baierlein 
(1981) recently reported growth-rate derivatives for a cylinder. 

The stability of convective rolls for small-aspect-ratio boxes and small Prandtl 
numbers relevant to experiments by Maeno, Haucke & Wheatley (1985) and others 
is currently under investigation. 

2. Equations 
We write the linearized Oberbeck-Boussinesq equations, which neglect density 

variations except where they modify gravity (Chandrasekhar 1961, chap. 11), in the 
small perturbations of the velocity V, temperature 0, and pressure P about the 
static state as 

Here, the Rayleigh number W = gad3 AT/Kv involves the gravitational acceleration 
g,  the thermal expansion coefficient a, and the excess temperature AT of the bottom 
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plate relative to the top (in conventional units). Length, time, velocity, and 
temperature are scaled by d,  d 2 / u ,  u/d and (ATu2/gold3)i. 

Like Cross (1980), we conveniently summarize (la-c) as 

where Y = (0, V) = (0, U ,  V ,  W )  and 3 = (0, V) are column vectors and 

v2/9 0 0 (.42/9)t 

(B/P)t 0 0 v2 
0 v 2  0 

0 v2 0 
0 (3) 

is a matrix operator in a temperature-velocity space of four dimensions. 
The boundary conditions V = 0 = 0 at  z = *+ ensure rigid conducting upper and 

lower plates. For sidewall lengths 1, and ly and corresponding aspect ratios r, = l,/d 
and r, = l y / d ,  the boundary conditions for the rigid insulating sidewalls may be 
written in rescaled dimensionless coordinates [ = x/T,  and r j  = y/ rY .  These are V = 
i i -  VO = 0 at  [, r j  = ++, where ii is a unit vector normal to the boundary. For these 
boundary conditions, partial integration reveals the self-adjointness of L with respect 
to the inner product (Y, 1 Y,), the volume average of YT Y2 ; 

(4) (YI I LY,) = (LYI I Y,). 

3. Variational solution 
A variational technique allows us to study the onset of convection. Assuming an 

exponential time dependence Y-eut and projecting (2a) on to Y yields-the 

(5) 
variational basis 

4'yI v) = (PI LY), 

where the pressure term vanishes by partial integration and (2b ) .  We solve ( 5 )  by 
substituting expansions 0 = ZrnCrn6Im(r), 

V =  zm[Drn urn(r) +Ern Vrn(r)l, ( 6 b )  

in functions Orn(r), Urn(r) and Vrn(r) whose dependence on the three spatial 
coordinates is indexed by m = (m,, m,, ma). 

The insulating sidewalls allow horizontally uniform modes with m, = 0 or m, = 0 
in the temperature expansion function, 

L , 0 + ( 1 - 8 m , 0 ) 4 2  cos~mxx ,  i = + i ,  

4 2  sin (2m- 1 )  xx, i =  -1, 
.f",X, = 

vanishes a t  x = *+. Here, = 1 for m = n and vanishes otherwise. Just as 
i = + 1( - 1) gives even (odd) Pi(.) about x = 0, the quantities i,, i, and i, give the 
parity of the temperature in the three spatial directions. These parities are chosen 
below to produce the desired number of rolls. Equation ( la) ensures that the 
temperature and vertical velocity have the same parity. 
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The velocity expansion functions U, = (U,,0, Wx,) and V,  = (0, V,, W,,) have 
historical importance. Using expansion functions of the form of U, (that is, functions 
with two non-zero components of velocity dependent on three spatial coordinates), 
Davis (1967) constructed ‘finite x-rolls’, or two-dimensional rolls with axes 
perpendicular to the x-axis. For rx > I‘v, his computations predicted these rolls along 
the short sidewall rather than ‘finite y-rolls’ of the form of V,. Davies-Jones (1970) 
later proved analytically that rigid sidewalls perpendicular to roll spines require 
three-dimensional rolls. Accordingly, even though U, dominates for x-rolls, we also 
include V,  for a complete three-dimensional description of x-rolls. Both expansion 
functions also describe our y-rolls. 

Our explicit velocity expansion functions are identical with those used by Catton 
( 1 9 7 2 ~ )  and analogous to those used by Charlson & Sani (1975) for a cylindrical 
geometry. The vertical components, 

use complete orthonormal eigenfunctions of 
x = + A  - 2  (Harris & Reid 1958; Chandrasekhar 1961, Appendix V), 

with vanishing slope and value a t  

and the horizontal components U ,  and V ,  follow from (2 6 ) .  For economy of notation, 
the parametric dependence on parity is suppressed on the left-hand sides of (7). The 
inner products (0, I 0,), (U,  I U,) and ( V,  1 V,) are normalized to unity by including 
suitable coefficients on the right-hand sides of (7). Since vanishing components of m 
have meaning only in uniform temperature modes, we take D, = Em = 0 for m, = 0 
or m, = 0. 

Our representation in terms of U, and V,  is general because ( l c )  allows only two 
independent velocity components. This generality is also evident in an equivalent 
potential formulation. To satisfy (1 c),  V may always be written as V = V x A .  Since 
an arbitrary gauge transformation A’ = A + Vx cannot change the velocity, we can 
choose a, x = - A  2. Expanding the components of the resulting A’ = $’2 + $r’j in 
functions 

fm = a[j:i(E) g2:(7) gk3(z), f m  = 92:(E) aJ2;(7) gk,(z) 

yields a representation wholly equivalent to ( 6 b ) .  The functions fA(x), a,f;(x) and 
gk(x) are complete on the interval -$ < x < for i = f 1, guaranteeing the full 
description of general three-dimensional flows. Using gauge transformations, 
solutions in our representation A’ can always be written in other general 
representations (such as A’‘ = V x t$”+z^$r”, Clever & Busse 1974) and vice versa. 

With explicit expansion functions, we proceed to solve the variational problem. 
Substituting the expansions, (6), and varying the coefficients C,, D, and Em reduces 
( 5 )  to a linear algebraic eigenvalue problem 
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y = (W/P)f, and sums on n are implied. Recalling that FA(%) and gk(x) are respective 
eigenfunctions of a: and 8: allows us to evaluate the elements of A,,,,, and B,, 
analytically by partial integration (see also Reid & Harris 1958). The temperature 
coefficient COOm, decouples from the equations and is therefore taken to  be zero. 

Equation (8) separates into eight decoupled eigenvalue problems corresponding to 
the eight combinations of i, = f 1 ,  i, = f 1 and i, = f 1 .  The parity combination 
yielding the lowest critical Rayleigh number is relevant a t  onset of convection. 
Because the problem separates, states a t  onset of convection consequently have 
definite parity, that' is, the temperature and the velocity components are either 
symmetric or antisymmetric in each coordinate direction. This general property of 
states a t  onset of convection arises ultimately from the box boundary conditions, 
and does not depend on the details of the representation. 

The mode indices m retained in x, deserve attention. We identify the indices 
retained for x-rolls ; indices retained for y-rolls follow by taking m, + m, and i, + i,. 
The principal index mlp = 2-1[N++(1-i1)] corresponds to an even (odd) number N 
of x-rolls for i, = + 1 ( - 1). The neighbouring indices m, = m,, - 1 and mlp + 1 provide 
corrections to the roll shapes if allowed by the condition m, 3 0. Even spinal parity 
i, = + 1 with m, = 0 , 1 , 2  ensures conventional rolls, each with uniform sense of 
rotation, whereas odd spinal parity i ,  = - 1 with m, = 1 ,2  divides a roll a t  its spinal 
midplanc (y = 0) into half-rolls rotating in opposite directions. Taking i, = + 1 and 
m, = 1 ,2  gives a single horizontal layer of rolls relevant to aspect ratios of unity or 
greater. Including the various combinations of m,, m, and m, for x-rolls in the 
eigenvector x, along with combinations for y-rolls yields eigenvalue problems with 
less than 100 unknown coefficients. The value of 9 yielding u = 0 in (8) is the critical 
Rayleigh number for onset of convection W,. Minimizing gC with respect to the 
number of x-rolls and y-rolls gives the preferred pattern a t  onset of convection. 

A test case with rx = 2 and r, = 1.4 indicates the numerical precision of our 
procedure at small aspect ratios. For two x-rolls (with mlp = 1 )  described by m, = 
mlp - 1, mlp, . . ., mlp + M ,  m2 = 0 ,1 ,  . . . , 1 + M and m3 = 1, . . . , 1 + M and two weaker 
y-rolls described similarly, the successive approximations M = 0, M = 1 (used in the 
computations, see last paragraph of this section), and M = 2 yield ge = 2677, 2417 
and 2390, This and similar convergence of the growth-rate derivative at  9 = 0.066 
(§4), u' = 41.74, 42.31 and 42.47, indicate high precision for M = 1 in gC and u' a t  
small aspect ratios. The relative contributions of successive terms in a single 
computation of I = (YI Y )  for M = 2 provide an additional convergence test. 
Defining I ,  as the contribution to I of terms involving modes defined by M (so that 
I ,  = I ) ,  we obtain 11, - I o ~ / I o  = 0.028 and / I ,  - 111/11 = 0.002 a t  onset of convection. 
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FIGURE 1 .  Velocity U in the x-direction a t  onset of convection as a function of x a t  y = 0 and z = 
0.4, with the origin of coordinates at the centre of a box of horizontal dimensions (relative to the 
depth) I‘, = 4 and r, = 4. The integers M = 0 , l  and 2 label successively better approximations. 

Thus, the convergence of our approximate solutions for this box geometry is 
comparable to the convergence of similar solutions for a laterally unbounded slab 
(Edwards & Fetter 1984) which agree with exact results. 

To demonstrate the precision of our eigenfunctions, we plot the x-component of 
velocity U as a function of x a t  y = 0, z = 0.4 and r, = r, = 4 for the successive 
approximations M = 0 , l  and 2 (labelled by integers on figure 1) .  The corresponding 
critical Rayleigh numbers are 9, = 1943, 1827 and 1819. The eigenfunctions are 
normalized so that (YlY) = 1 at each level of approximation. Henceforth, the 
approximation M = 1 is used. 

4. Growth-rate derivative 
Of interest to experiments is the growth-rate derivative a t  convective threshold, 

a‘ = (dr/de),=,. To find its dependence on 8, we examine infinitesimal-amplitude 
perturbations a t  9 > B,, where they actually grow with time, using an approach 
similar to one used by Shaumeyer et al. (1981) for a cylinder. Specifically, we evaluate 
( 5 )  a t  9/9, = 1 + E ,  a = V’E, Y = Y, + YE,  and corresponding L = L, + L’E with 
L;* = LI1 = 2-’(9,/9):, otherwise LLp = 0. To first order in E ,  the self-adjointness 
of L and the onset condition L, Y, = Oreduce (5) to a’ = ( ~ , / ~ ) ~ ( @ , ~ ~ , ) / ( Y , ~ Y , ) .  At 
critical conditions (a = 0) in (l), a resealed critical temperature 0: = P:@, shares 
the 9”-dependence of V,. Hence, the explicit Prandtl-number dependence of a‘ is 

For convenience, we rewrite ~’(9) in terms of cr’(0) and a’(1) as 

d(9y = d(0)-1+ P[a’( l)-1- a’(0)-11. 
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FIGURE 2. Critical Rayleigh number for onset of convection R, versus the 2-aspect ratio r,. 
The top, middle, and bottom dashed curves and the solid curve correspond to the y-aspect ratios 
r, = 1,2 ,  3 and r, respectively. The four horizontal line segments give the corresponding large-T‘, 
limits. 

According to (9), a single calculation of Y, and aC a t  9 = 1 yields 

a’(0) = ( ~ , ) ~ ( ~ , l ~ , ) / ( ~ C l ~ C ) ~  r’(1) = ~ ~ , ~ ~ ~ ~ c l ~ c ~ / ~ ~ c I ~ c ~ ~  

Equation (10) then supplies the growth-rate derivative at  all 9. Shaumeyer et al. 
(1981) inferred d ( 1 )  and a’(03) relevant to their (18) from numerical computations 
of (T a t  e 4 1 for B = 1 and B = 03. 

5. Results and discussion 
To determine the preferred pattern in a square box with r, = r,, we first minimize 
9, in the number N of x-rolls in the absence of y-rolls. Then, with N fixed a t  the 
minimum N , ,  minimization in the number of superposed y-rolls completes the 
procedure. We find that an even number N ,  of x-rolls requires the same number of 
y-rolls of equal strength. These reinforce each other a t  the centre of the box and 
thereby preserve the four-fold rotation symmetry about the vertical axis. In 
contrast, odd N ,  breaks this symmetry by choosing N , -  1 weaker y-rolls. The 
corresponding odd spinal parity of these y-rolls requires opposite senses of rotation 
on either side of their spinal midplane ($4). In general, whatever the value of N , ,  the 
number of y-rolls must be even as long as the x-rolls are symmetric about their spinal 
midplanes (i, = + l ) .  Otherwise, the i, for the two flows do not agree and the 
differential equations separate into two uncoupled sets. This requirement of an even 
number of y-rolls is the key to the remarkable symmetry properties of square boxes 
a t  onset of convection. 
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FIGURE 3. Derivative of the growth rate CT with respect to F: = W/W,- 1 evaluated at onset of 
convection E = 0 for Prandtl numbers (a )  9 = 0 and ( b )  B = 1 as a function of the z-aspect ratio 
r,. The top, middle, and bottom dashed curves and the solid curve are, respectively, for r, = 1, 
2 , 3  and r,. The growth-rate derivative (~'(9) = (da/ds),_, for arbitrary 9 follows from (10). 
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0 1 2 3 4  5 6 7  r, 
FIQURE 4. Phase diagram of the number of rolls perpendicular to the z-axis (internal numbers) as 

a function of the box aspect ratios r, and r, < r,, for different N,.  

Calculated values of W, show that linear theory favours crossed rolls over parallel 
rolls in square boxes with small aspect ratios. For f, = f, = 2,6,12, we obtain 
W, = 2219, 1774, 1729 for x-rolls and 9, = 2107, 1765, 1729 for crossed rolls. Thus, 
crossed rolls are clearly preferred at  small aspect ratios because of their significantly 
smaller 9,. At large aspect ratios, W, converges for the two configurations, 
reflecting the degeneracy of the laterally unbounded slab. Catton ( 1 9 7 2 ~ )  obtains the 
corresponding values 9, = 2276, 1797, 1741. His value W, = 2276 for r, = f, = 2 is 
near our value for finite x-rolls, 9, = 2277, obtained by neglecting V,,,. 

Figure 2 shows our calculated 9, for square boxes (solid trace) as a function of 
f, = f,. The value W, = 1708 for a laterally unbounded slab (lowest horizontal line 
segment) is shown for comparison. Cusps divide regimes of different N ,  starting a t  
N ,  = I for r, = 1 ; N ,  increases by one at each cusp. Values of 9, were calculated a t  
integral and half-integral values of r,; cubic splines interpolate between the 9, a t  
given N , .  9, for given N ,  is shown only to its intersection with neighbouring curves 
for N ,  - 1 and N ,  + 1, even though larger ranges were calculated. 

The preferred convective pattern in rectangular geometries satisfying f, > r, is 
determined by fixing the number of y-rolls a t  the value appropriate to a square box 
of aspect ratio f, and minimizing the Rayleigh number with respect to the number 
of x-rolls. Figure 2 shows the resulting 9, for f, = 1 , 2 , 3  (top, middle, bottom dashed 
traces). The data converges with increasing r, to corresponding values obtained by 
Luijkx & Platten (1981) for an infinite channel (horizontal line segments) ; our values 
at r, = 12 exceed theirs by less than 2 YO. 

Figures 3(a) and 3(b) shows the growth-rate derivative a‘ = (da/ds),,, a t  9 = 0 
and 1, respectively. As in figure 2, the top, middle, and bottom dashed traces are for 
fixed r, = 1,  2 and 3 and the solid trace is for f, = f,. For large r,, the solid traces 
converge to the values cr’(0) = 38.41 and ~ ’ ( 1 )  = 13.00 for a laterally unbounded slab 
(Behringer & Ahlers 1977; Stewartson & Weinstein 1979). Values of a’(9) a t  
arbitrary 9 follow by reading values for d ( 0 )  and a’( 1) from figures 3 (a)  and 3 (b) and 
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FIGURE 5. Horizontal velocity vectors at onset of convection a t  z = 0.4 for aspect ratios r, = 2 
and (a )  r, = 2, ( b )  2.5,  (e) 3 and ( d )  4. 

by applying (10). With time f measured in seconds, disturbances about the static 
conduction state in the velocity or temperature fields near onset grow (or decay) as 
exp [vd? (~'(9) eq. Furthermore, the decay rate of small disturbances about steady 
small-amplitude flows is 2v = ~ ( T ' E  (Behringer & Ahlers 1977). These relations can be 
used for direct comparison with experiments. 

Unit changes in N ,  produce discontinuities in our u' as a function of r,. In  
contrast, Shaumeyer et al. (1981) report a continuous (TI for concentric rolls in a 
cylinder. This is to be expected from symmetry considerations. Concentric rolls in a 



Crossed rolls at onset of convection in a rigid box 593 

cylinder have even vertical velocity about reflection of the Cartesian x-axis, 
W( -2) = W ( x ) ,  regardless of the number of rolls, whereas rolls in a box may have 
either parity, W (  -x) = f W ( x ) .  In a box, unit changes in N ,  reverse the parity of the 
solution. Although 9, is continuous a t  parity reversals by construction, its 
derivatives and u‘ need not be continuous for a box. For concentric rolls in a cylinder, 
however, true solutions for W,, its derivatives, and u’ must be continuous functions 
of the aspect ratio. In fact, for increasing cylindrical aspect ratio f (ratio of radius 
to depth), Charlson & Sani (1970) reported gradual formation of new rolls (see their 
figure 8) at the cylinder wall. The apparent cusps in 9, as a function of r in their 
figure 7 for insulating rigid sidewalls are apparently artifacts of their interpolation 
procedure; their table 2 indicates a smooth We. The cusps in our figure 2 and the 
discontinuities in our figure 3 are real. 

Figure 4 shows the regimes of different N ,  (labelled by values of N , )  for small 
aspect ratios ; curves in figure 4 connect the values of (r,, r,) a t  the cusps in figure 2. 
Since the 9, a t  particular values of N ,  become flat functions of I‘, a t  large aspect 
ratios, their intersections (cusps) are sensitive to small changes in a,. Thus, in the 
absence of very accurate calculations of W,, the accuracy of diagrams like figure 4 
may suffer a t  larger aspect ratios. Nevertheless, the agreement with Stork & Muller’s 
measurements is good (see their figure 10). Where figure 4 differs from figure 13 of 
Davis for conducting sidewalls, it generally predicts one fewer roll. 

Koschmieder (1966) observed a ‘square’ pattern for a square box of aspect ratio 
r= (12.25,12.25) composed of 12 rolls in each horizontal direction (his figure 11) .  
For r = (11.43,11.43), however, he obtained a combination of rolls and squares (his 
figure 13) not describable as simple combinations of x-rolls and y-rolls. Our analysis 
predicts his square pattern but probably requires a large number of terms to describe 
his other pattern. The effective degeneracy of parallel rolls and crossed rolls a t  r, = 
I‘, = 12 (see above) indicates that other patterns, possibly including his combination 
of rolls and squares, might be similarly degenerate a t  this large aspect ratio. 
Apparently, as is necessary for the laterally unbounded slab, this large-aspect-ratio 
box requires a nonlinear analysis to determine the physical convective pattern. 

Our linear treatment cannot predict the overall direction of circulation of the flow 
(if Y is a solution, then - Y is also a solution), but it does predict the direction of the 
y-rolls relative to the x-rolls. Horizontal velocity vectors a t  z = 0.4 in figures 5 ( a )  and 
7 ( a )  for the square boxes r, = r, = 2 and 4 show that even values of N ,  give equally 
strong x-rolls and y-rolls that reinforce each other a t  a central node. Figure 5 ( b )  for 
r, = 2.5 and r, = 2 mimics the flow in figure 5 ( a ) ,  even though the two 2-rolls 
dominate. For patterns with odd N ,  (figures 6 a  and 8),  x-rolls and y-rolls reinforce 
each other a t  two oppositely directed nodes near the centre of the box, even though 
the x-rolls clearly dominate. 

Improved understanding of the flow fields results from vertical-symmetry 
considerations. Since W (  -2) = W ( z )  (i3 = + l ) ,  ( 1  c )  requires odd horizontal velocity 
components about z = 0;  2 x V( -2) = -2  x V(z) .  Therefore, flow fields a t  z = -0.4 
follow from those a t  z = 0.4 in figures 5-8 by simply reversing the directions of the 
horizontal velocity vectors. The resulting flow field in figure 5 (c )  complements figure 
17 of Dallmann (1985) showing streamlines near onset of oscillations where, 
apparently, three rolls are relevant for r = (4,2).  Interestingly, Dallmann reported 
no closed three-dimensional streamlines. 

Nodes occur where regions of maximum vertical velocities in the x-rolls and y-rolls 
reinforce each other. In the two-dimensional velocity plots, nodes appear as sources 
or sinks of velocity. If rolls whose sense of rotation changes a t  x = 0 are handled 
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FIGURE 6. Horizontal velocity vectors at z = 0.4 for (a )  I', = 3 and ( b )  4, with r, = 3. 

properly, the locations of all the nodes for any specified roll pattern may be estimated 
by assuming equally spaced rolls in each direction. For example, the nodes at  
(x, y) = ( -  *+, 0) and ( +$, ki) in figure 6 ( a )  follow from three x-rolls, each with a 
uniform sense of rotation and width 1, and two y-rolls, each with width 1.5 and 
changing sense of rotation a t  x = 0, which reinforce each other a t  (i, 0). Opposition 
a t  ( 4 , O )  would instead yield only boundary nodes at (2, y) = (+;, 0) and ( - &$, +$). 
In all cases that we considered, the x-rolls and y-rolls reinforced each other near 
the centre of the box, either as a single node a t  the centre for even N , ,  or as two 
oppositely directed nodes near the centre for odd N , .  This method may be applied in 
reverse to extract the orthogonal (or other) roll configurations from the positions of 
the nodes in a given experimental flow pattern. 

Our figures 5-8 display important features of experimental flows observed by Stork 
& Muller. (In their pictures, regions of large vertical velocity are dark.) Notably, our 
figures 5 ( a ) ,  7 ( a )  for r, = r, = 2,4  and the corresponding figures 5 ( c ) ,  6 (9 )  of Stork 
& Miiller agree that the number of rolls in each direction is r, and that the crossed 
patterns have comparable amplitudes, thereby preserving the fourfold rotation 
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FIGURE 7 .  Horizontal velocity vectors at z = 0.4 for (a) r, = 4 and ( b )  4.5, with f, = 4. 

symmetry of the box. Figure 5 ( a )  is also similar to the single toroidal roll preferred 
by a cylinder with equal radius and depth (Charlson & Sani 1970). For rectangular 
boxes, the ends of the outermost rolls observed by Stork & Muller bend toward the 
box centre (see their figures 5d-f and 8 c  for examples). This three-dimensional effect 
is also evident from our figures 6 ( b )  and 7 (b ) .  Our pattern for r = (r,, r,) = ( 5 , 5 )  
(figure 8 , N ,  = 5) corresponds to Stork & Miiller's pattern for r = (4.5,4) (their 
figure 9c) rather than for r = (5.1,5.0) (their figure 79). The shorter sidewall of their 
figure 9c  (r, = 4) partially removes the stagnant regions evident in the upper and 
lower middle of our figure 8. For r= (4.5,4), our calculated gC = 1828 for their 
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FIGURE 8. Horizontal velocity vectors at z = 0.4 for r, = r, = 5. 

observed pattern ( N ,  = 5 )  exceeds W, = 1800 for our predicted pattern ( N ,  = 4) by 
only 2 %. 

Experimental values of 9, typically exceed our theoretical values. For example, 
Stork & Miiller's 9, = 2400+40 for r= (2,2) (their figure 4a)  exceeds our 
corresponding value, 2106. Maurer & Libchaber (1979) obtained the experimental 
value W, = 2300 for three s-rolls and r = (3.29,1.88) compared to our W, = 2013. 
Differences may be due to partially conducting sidewalls in the experiments, since 
finite sidewall conductivity raises 9, (Catton 19723; Charlson & Sani 1970). 

In this complete description, the linear Oberbeck-Boussinesq equations require 
eigenfunctions with definite parity regardless of the aspect, ratio. Figures 7 (c) and 
7(d) of Stork & Miiller each exhibit a single narrow roll along one edge of a 
rectangular box, and therefore lack definite parity. Description of such flows 
probably requires a nonlinear analysis, which allows states of indefinite parity. 

6. Conclusion 
A correct treatment of onset of convection in boxes with small aspect ratios 

requires crossed rolls consisting of three-dimensional x-rolls and y-rolls. Three- 
dimensional effects are especially important for square or near-square boxes. 

Experiments in boxes whose longest ratio of width to depth is near an odd number 
might further confirm our theoretical picture. Measurements of the growth-rate 
derivative for boxes would also be useful. 
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